Time-Order Representation Based Method for Epoch Detection from Speech Signals
نویسندگان
چکیده
Epochs present in the voiced speech are defined as time instants of significant excitation of the vocal tract system during the production of speech. Nonstationary nature of excitation source and vocal tract system makes accurate identification of epochs a difficult task. Most of the existing methods for epoch detection require prior knowledge of voiced regions and a rough estimation of pitch frequency. In this paper, we propose a novel method that relies on time-order representation (TOR) based on short-time Fourier– Bessel (FB) series expansion which can be employed on entire speech signal to detect epochs without any prior information. The proposed method automatically detects voiced regions in the speech signal by computing the marginal energy density with respect to time in the low frequency range (LFR) from the energy distribution in the time-frequency plane. An estimate of pitch frequency for each detected voiced region is then obtained by computing the marginal energy density with respect to frequency in the LFR from the energy distribution in the time-frequency plane. Epochs are located for each detected voiced region as peaks in the derivative of the low pass filtered (LPF) signal corresponding to falling edges of peak negative cycles in the LPF signal synthesized from TOR coefficients corresponding to LFR. Experimental results obtained by the proposed method on speech signals taken from the CMU-Arctic database are found to be promising. The proposed method detects epochs with high accuracy and reliability.
منابع مشابه
A novel method for epoch extraction from speech signals
This paper introduces a novel method of speech epoch extraction using a modified Wigner-Ville distribution. The Wigner-Ville distribution is an efficient speech representation tool with which minute speech variations can be tracked precisely. In this paper, epoch detection/extraction using accurate energy tracking, noise robustness, and the efficient speech representation properties of a modifi...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملA New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function
Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Intelligent Systems
دوره 21 شماره
صفحات -
تاریخ انتشار 2012